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Supersolid order of frustrated hard-core bosons in a triangular lattice system
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We numerically demonstrate that a supersolid phase exists in a frustrated hard-core boson system on a
triangular lattice over a wide range of interaction strength. In the infinite repulsion (Ising) limit, we establish
a mapping to the same problem with unfrustrated hopping, which connects the supersolid to the known results
in that case. The weak superfluidity can be destroyed or strongly enhanced by a next-nearest-neighbor hopping
term, which provides valuable information for experimental realization of a supersolid phase on optical lattice.
A phase diagram for the frustrated anisotropic Heisenberg model on triangular lattice is also established.
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I. INTRODUCTION

A supersolid phase is a state of matter exhibiting both
diagonal and off-diagonal long-range order (ODLRO).! Re-
cent possible observation of a supersolid phase? in “He under
pressure has attracted a lot of interest. While the microscopic
conditions under which clean “He could be in a supersolid
phase are still unclear, supersolidity is established for hard-
core bosons on a triangular lattice, which is the focus of
many recent studies.>”’ The supersolid phase is an example
of ordering by disorder demonstrated for hard-core boson
system with unfrustrated nearest-neighbor (NN) hopping and
strong repulsion*~¢ based on extensive quantum Monte Carlo
simulations and theoretical analysis. These theoretical works
are motivated in part by experimental realizations of lattice
bosons in ultracold atom traps.® Intriguingly, the superfluid
density in the supersolid phase is found to be very small,
possibly indicating that the system is near a phase boundary®
to an insulating phase. It is thus highly desirable to examine
the stability of the supersolid phase in more extended models
to determine the relevant perturbation and possibly to sug-
gest a route of getting into a deep supersolid phase for
experiment.

The nature of the state for the hard-core bosons with frus-
trated NN hopping on triangular lattice is another open issue,
where the model can be mapped to the spin-1/2 XXZ antifer-
romagetic (AF) Heisenberg model which suffers from the
sign problem. Historically this model was the first candidate
proposed to realize a spin liquid ground state,'? although it
turns out to still exhibit a three-sublattice AF long-range-
order (LRO) in general, which may persist to large J, limit.!!
However, extensive numerical studies have been limited to
near the SU(2) point'? and the precise nature of the ordering
at larger J, (or the strong NN repulsion limit for the corre-
sponding boson model) has not been well understood.

In this Rapid Communication, we present a systematic
density-matrix renormalization-group (DMRG) and exact di-
agonalization (ED) numerical studies of the half-filled
ground state of the frustrated model over a wide range of the
NN repulsion. We show that a robust supersolid phase does
exist in this model and it can be related to the well-known

1098-0121/2009/79(2)/020409(4)

020409-1

PACS number(s): 75.10.Jm, 03.75.Lm, 05.30.Jp

supersolid phase of an unfrustrated NN hopping model in
infinite repulsion (Ising) limit, where a precise mapping be-
tween the two models by a sign transformation can be estab-
lished. Furthermore, we reveal that the supersolid phase is
close to a transition to an insulating phase, and correspond-
ingly the superfluidity can be strongly enhanced (or easily
switched off) by tuning a next-nearest-neighbor (NNN) hop-
ping term. Our results have also provided a theoretical un-
derstanding of the nature of the ground state of the frustrated
Heisenberg model on triangular lattice at the large J, limit.

II. SUPERSOLID PHASE FROM ISOTROPIC SU(2) POINT
TO LARGE J, LIMIT

We consider a simple model of hard-core bosons at half-
filling on the triangular lattice interacting via a repulsive
term,

H=-1> (bjb;+bb) + 2 V(ni— 1)<nj- 1), (1)

(@ (i) 2 2
where b[T is a boson creation operator and »n; is a boson num-
ber operator. (ij) denotes NN sites and we shall mainly con-
sider the frustrated boson hopping at 7<<0. This boson
Hamiltonian is equivalent to—by a standard mapping from
hard-core bosons to S=1/2 spins—an XXZ Heisenberg
model on the triangular lattice,

H=>, J—i(sjs; +H.c) +J.SiS5 | ()
w L2

with J,=V and J,=-2¢. In the spin language, a charge-
density wave (solid) order implies infinite-range correlations
of the z component of spins at a nonzero wave vector, while
the superfluid order is equivalent to the in-plane ordering of
the spins also at a nonzero wave vector for the frustrated
system. In the following analysis, we will work interchange-
ably in terms of bosons and spin variables.

We first present the numerical results based on DMRG
method!? for a triangular lattice with the total number of sites
N=N; X N,. We keep up to m=4096 states in each DMRG
block for most systems and the truncation error is of the
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FIG. 1. (Color online) The order-parameter squared, (m_)*> and
(m | )?, as functions of the anisotropy A=J,/J | are shown in (a) and
(b), respectively, with N=6 X 6,9 X 6, and 12X 9. The insets are the
corresponding extrapolations in the thermodynamic limit. Examples
of finite-size scaling of the order parameters are also shown in (c1)
and (c2) with system size up to N=9 X 18.

order or less than 10™. We make use of the periodic bound-
ary condition to reduce the finite-size effect for a more reli-
able extrapolation to the thermodynamic limit. To analyze
the magnetic properties of the system, we calculate the struc-
ture factors S,(q) and S, (q) defined by S.(q)
=32 e TSI and S, (q)= g, e ITTNSTS,).

The obtained S.(q) and S, (q) show Bragg peaks at the
corners of the hexagonal Brillouin zone [e.g., at gq
=(*4m/3,0)]. In particular, at small A=J_/J, <1, the peak
of S.(qp) is very weak, while that of S, (qq) is very sharp,
representing the dominant AF correlation in the XY plane.
With the increase of A, S.(qq) grows continuously and its
value becomes bigger than the in-plane ones passing the
point A=1. One can obtain the magnetic order parameters
based on the finite-size scaling of the peak values of S.(q,)
and S| (qo). Specifically, the average magnetization {m.) and
(m,) can be determined by (m.)*=S.(q))/N and {m)*
=S ,(qp)/N, which are shown vs A at N=36, 54, and 108 in
the main panel of Figs. 1(a) and 1(b).

Nonzero (m_)? and (m  )* in the thermodynamic limit will
correspond to the diagonal LRO and ODLRO, respectively.
Examples of the finite-size scaling are shown in Figs. 1(c1)
and (c2) by plotting (m.)> and {m)* as functions of 1/N.
Thus obtained order parameters extrapolated to the thermo-
dynamic limit are presented in the insets of Figs. 1(a) and
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FIG. 2. (Color online) Superfluid stiffness p, (in units of J ) as
a function of the anisotropy A=J_/J, obtained from ED (N=36) or
DMRG (N=54) calculations.

1(b). At small A, the system is in the pure superfluid phase
with magnetic order solely lying in the XY plane with
(m)*>#0 and (m,)=0 (cf. the inset of Fig. 1). By contrast, at
A>1 the three-sublattice antiferromagetic long-range order
develops in both z direction and XY plane characterized by
nonzero values of (m_)* and (m  )*. Here (m,) monotonically
increases with A from the isotropic point (A=1) consistent
with the spin-wave picture of coplanar ordering in the XZ
plane. For the corresponding boson system, our results sug-
gest a supersolid phase with coexisting diagonal LRO and
ODLRO at A=A,. The phase boundary A, between the su-
perfluid phase and supersolid phase is very close to the iso-
tropic point A.=(J,/J).=(V/2[t]).~ 1.00.

We note that at large J, case, e.g., A=8, <m2)2=0.049
({(m,)=0.24) which is much larger than the corresponding
value at the isotropic point, while the XY-plane magnetiza-
tion reduces to {(m | )>=0.0036 ((m , )=0.06) in the thermody-
namic limit. Though this superfluid ordering is small, its
value actually is comparable with that of the unfrustrated
hard-boson supersolid*~® at the same large J, limit as we
have checked numerically. In the following, we can further
establish the presence of the superfluidity through the calcu-
lation of the superfluid density p, by adding a nonzero twist
phase at the system boundary with pszﬁ «[E(6,=m)
—-E(6,=0)]. We obtain p; by adding a twist phrase 0.=1 in
both ED and DMRG calculations,'# which are shown in Fig.
2 as a function of A for N=36 and N=54. From the figure,
we can see that the finite-size effect for p, is very weak and
p, should remain finite in the thermodynamic limit consistent
with the finite (m)* in Fig. 1. At J,>10, the DMRG be-
comes difficult to converge as the energy from J, term be-
comes dominant; the ED results further suggest that the ob-
tained p, should be nonzero over the whole range of J, with
a value matching with the ones for the unfrustrated bosons in
the large J, limit.®

III. SUPERSOLID ORDER IN THE ISING LIMIT

Now we turn to the interesting limit of A— o, where the
direct in-plane magnetic ordering in the numerical results is
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very weak and the spin-wave theory suggests that it vanishes
as square root of J, /J,. Clearly, here a rigorous examination
is desired. At J,— 0, the XXZ model in Eq. (2) reduces to the
classical Ising AF on a triangular lattice. This classical model
is well known to have a macroscopic degeneracy of ground
states, which correspond to all spin configurations with ex-
actly one frustrated bond per triangle.!® In this limit, the XXZ
model reduces to

H,=J /22, P(S}S; +H.e)Pe, (3)
(ij)
where I3C is a projection operator onto the classical Ising
ground-state manifold.

The unfrustrated model with J, <0 has been studied pre-
viously and shown to exhibit supersolid order.*"® We now
show how supersolidity in the frustrated case J, >0 can be
deduced from those known results. We first consider thermo-
dynamic and other properties that can be deduced from the
partition function and diagonal expectation values of the
form,

Z(03J ) = Te{PO[(55)]e P}, (4)

where O is any function of the z components of the spins
(including the identity operator where Z reduces to the par-
tition function). From such quantities, we can calculate the
free energy and the diagonal (solid) correlations. We show
that Z is an even function of J |, and so these properties are
identical for the frustrated and unfrustrated cases. To see this,
consider the high-temperature expansion of Z in powers of
BJ . The terms in the expansion consist of successive ac-

tions of bond operators of the form ﬁCSfSJTIAJC on nearest-
neighbor links, with a factor of BJ, accompanying each
bond operator. To achieve a nonzero expectation value in the
trace, the boson number on each site must be unchanged
after the action of all these operators. Graphically, we may
represent each factor of S7S; on the lattice as an arrow point-
ing from site j to site i, and we require this “vector field” to
have zero divergence, i.e., the arrows close into “exchange”
loops. Now consider the contribution from any particular
state in the trace. Due to the projection, each bond operator
has a nonzero action only if i and j are “flippable,” i.e., the
two other spins on each triangle containing i or j are antipar-
allel. Now let us circumscribe each exchange loop on our
graphical representation by a neighboring loop as in Fig. 3.
In order that all sites on the exchange loops are flippable,
spins on the neighboring loops must alternate, which requires
that all of the neighboring loops must have an even number
of sites. This in turn requires that the total number of links on
each exchange loop is even. Thus Z[O;J ] is indeed an even
function of J .
Now consider the off-diagonal correlation function,

(S187y=2"' TIPS} S;e P=]. (5)

Once again, one may consider the high-temperature expan-
sion of the numerator (the denominator Z has already been
shown to be even). In this case, contributions must be diver-
genceless except at the sites i and j, which appear as source
and sink, respectively. One can understand the behavior by
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FIG. 3. (Color online) Illustration of the paths contributing to
the high-temperature expansion and the associated sign rule. In (a),
we show a representative loop appearing in the expansion of the
partition function. The = signs show one of two alternating spin
configurations allowed around the loop, which allows only even-
length loops. In (b), we show a representative path in the expansion
of the off-diagonal correlation function between sites i and j. For
such a path with an odd number of steps, the auxiliary sites i
+d,j+ad (shown in circles) must be antiparallel.
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considering just the simplest terms, in which the arrows form
a single path connecting i to j (see Fig. 3). Now form a
tightly circumscribing loop about this path. As above, for any
state in the trace to contribute, the spins S} on the sites of this
neighboring loop must alternate. Moreover, the six spins
neighboring i and j must also alternate since S;-“S,-" acts di-
rectly on these states. Now consider the product 45,5}, ,
where @ is any nearest-neighbor vector, acting on a state
which contributes to the trace. Because of the alternating
spins around the circumscribing loop, this factor gives the
parity of the exchange path, i.e., it equals +1 for an even path
and —1 for an odd path. One may show that this conclusion is
unaffected by additional closed loops, which appear as
higher-order terms in the high-temperature series. Since this
is true for every term in the expansion, we find <S}’Si_) | 7,50

=487, 455087 SO -0 -

The above observations lead us to the conclusion that the
supersolid phase survives even for the frustrated hard-core
boson system at strong repulsion (V=J,— ) limit as it maps

to the unfrustrated model.*~°

IV. ENHANCEMENT OF THE SUPERFLUIDITY AND THE
ORDERING OF THE SUPERSOLID PHASES

To understand the underlying reason why the superfluid
stiffness is relatively weak,” we add a NNN hopping ¢’ =
—J'/2 term. For simplicity we only present the results for
J,=-2t>0 and large J, (Ising) limit, although the obtained
results also apply to both models with a finite range of J..

The superfluid stiffness is calculated using the ED method
for the projected Hamiltonian. As illustrated in Fig. 4, p; is
relatively small at J'=0 compared to its value in the region
J'1J, <0 (negative sign represents an unfrustrated NNN
hopping). In fact, p, monotonically increases with a negative
J' and when J' =—J |, p, becomes comparable to the value of
a pure superfluid phase (i.e., the ferromagnetic XY model on
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FIG. 4. (Color online) Superfluid stiffness p, (in units of J ) vs
J'1J | for systems with NNN hopping 7’ (superexchange J'). The
finite-size order parameters (m_)*> and (m ,)? at N=54 are shown in
the inset.

triangular lattice®). Clearly a boson system at J' =0 is indeed
near the phase boundary of an insulating phase, which occurs
at (J'/J,).~0.2 (which we further identify as a solid phase
with diagonal LRO). The finite-size order parameters ()
and (m )* for N=54 are also shown in the inset of Fig. 4,
where the enhancement of the peaks of the structure factors
S.(go) and S | (qq) are clearly seen as we continuously turn on
the negative J'. Thus the resulting phase is a supersolid
phase with strong diagonal LRO and superfluidity.

These observations and the precise nature of the super-
solid ordering can be rationalized by simple energetic argu-
ments in the large J, limit. For the NN hopping case (J'
=0), the constraint that neighboring spins to the hopping path
must alternate tends to enhance hopping that takes “60°”
turns (forming hexagonal path), which keeps the bosons on
two of the three sublattices. Moreover, the third sublattice on
which hopping does not proceed must be substantially polar-
ized. Thus the three-sublattice ordering (S,)=(-m,—m,2m
+6) is favored energetically consistent with a ferrimagnetic-
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ordered phase.”'® When the NNN hopping term is dominant
(=J'=J ), bosons tend to hop on a single (say A) sublattice,
while spins on the neighboring sites from sublattices B and C
are individually preferred to be ferromagnetically aligned
with B and C spins antiparallel to each other. This corre-
sponds to (S.)=(0,m,—m) or “antiferromagnetic” ordering,
which we therefore expect in the large —J' limit. This is
indeed supported by numerics, which will be presented
elsewhere.

In summary, we have established a robust supersolid
phase for the frustrated hard-core bosons on a triangular lat-
tice at half-filling based on extensive numerical calculations
and analytical analysis. The observed supersolidity is an ex-
ample of ordering by disorder elegantly realized for such a
frustrated system. Furthermore, we have found that the su-
persolid phases for the hard-core boson models with only
NN hoppings are quite close to a pure solid phase in both
frustrated and unfrustrated cases. But a small unfrustrated
NNN hopping term can push the boson systems into a deep
supersolid phase with greatly enhanced superfluidity. Our
theoretical study can thus provide a solid foundation for the
experimental realization of supersolid phase on a triangular
optical lattice.
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